Int. J. Heat Mass Transfer. Vol. 13, pp. 43-54. Pergamon Press 1970. Printed in Great Britain

A VARIATIONAL SOLUTION TO THE TAYLOR
STABILITY PROBLEM BASED UPON
NON-EQUILIBRIUM THERMODYNAMICS

H. W. BUTLER and D. E. MCKEE
Department of Mechanical Engineering, West Virginia University, Morgantown, West Virginia 26506

(Received 30 April 1968)

Abstract—The recent papers of Glansdorff, Prigogine and Schechter have shown that a time dependent
local potential exists in which the macroscopic time evolution corresponds to an extremum. Schechter and
Himmelblau [19] solved the well-known Bénard problem using a restricted variational formulation. In this
paper the works of GlansdorfT, Prigogine and Schechter are modified and extended to obtain a variational
solution to the Taylor stability problem for a viscous fluid contained between rotating coaxial cylinders
with and without a radial temperature gradient. The results obtained are in excellent agreement with the
analytical results of Chandrasekhar[9], Chandrasekhar and Elbert [10], Diprima, Walowit and Tsao [4),
Yih[5], Lai[25], and Becker and Kaye [7]and with the experimental results of Becker and Kaye[8], Bjork-
lund and Kays [12}, Haas and Nissan [13] and Ho, Nardacci and Nissan [15].

NOMENCLATURE

dimensionless wave number ;
constant equation (24);
constant equation (49);
constant equation (25);
constant equation (49);
constants equation (43);
specific heat at constant volume;
internal energy per unit mass;
ith thermodynamic flux ;
thermal conductivity;
functional symbol ;
R, — Ry;
ratio of Rayleigh to Taylor number;
Prandt] number;
pressure;
Rayleigh number ;
radius of inner and outer cylinder ;
radius;
surface;;
Taylor number;
temperature perturbation ;
43

T, T,, temperature of inner and outer
cylinder;

t, time;

u;, ith component of velocity vector ;

u, radial perturbation component of
velocity ;

v, volume;

v, 0 perturbation component of
velocity;

W, ith component of heat flux vector;

X, dimensionless radius, equation (47);

X, ith cartesian coordinate;

X, ith component of body force;

Xy generalized perturbation ampli-
tude;

z, axial coordinate.

Greek symbols

o, coefficient of volume expansion;

Oy constant in equation (57);

B constant in equation (58);

- constant in equation (59);
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o, variational symbol;

0ij, Kronecker delta ;

g, time interval ;

L, dimensionless length ;

n, radius ratio R,/R;;

7, pressure perturbation amplitude;

0, cylindrical coordinate ;

8, temperature perturbation ampli-
tude;

A, wavelength in axial direction z;

M absolute viscosity;

i, speed ratio Q,/Q, ;

kinematic viscosity u/p;
velocity perturbation amplitudes ;

v’
5:" 605 éza

P, density;
a, stability parameter ;
Tips ith, jth component of stress tensor ;
o, local potential ;
Q,,Q,, angular velocity of inner and outer
cylinder.
Superscripts
*, nonvaried quantity during varia-
tional process;
s, evaluated at a stationary state.
Subscripts
0, evaluation at a reference state;
i, ith component of a vector;
ij, ith, jth component of a tensor ;
r,x,0,z, components in coordinate direc-
tions.

1. INTRODUCTION

THE PROBLEM of the stability of a viscous fluid
contained between concentric cylinders was
first analyzed by G. L. Taylor [1] in 1923. Since
then numerous researchers have obtained solu-
tions under a wide variety of boundary condi-
tions and restraints. An excellent review of
the research connected with this problem has
been compiled by Chandrasekhar [2] and by
DiPrima [3]. In 1964, Diprima, Walowit and
Tsao [4] solved the Taylor problem using
Galerkin’s Method with and without a radial
temperature gradient and obtained results which

were 1 good agreement with the analytical
results of Yih [5], Lai [6], Becker and Kaye
[7, 8], Chandrasekhar [9], Chandrasekhar and
Elbert [10], and Kirchgassner [11]. In addition
their results were in good agreement with the
experimental results of Becker and Kaye [8],
Bjorklund and Kays [12], Haas and Nissan
[13], and Ho, Nardacci and Nissan [14].

Because of the excellent agreement between
the published analytical and experimental re-
sults, this problem was selected to demonstrate
the usefulness of a variational technique which
is based upon non-equilibrium thermodynamics.
In 1964 Prigogine and Glansdorff [15] showed
that for the whole class of macroscopic systems
subjected to time independent boundary condi-
tions, there existed a general criterion of
evolution. In this paper, the evolution criterion
predicted the existence of a quantity d¢ of
the form

dp = [> J,dX;dV <0 (1)

where the forces X, and fluxes J, include
mechanical processes (i.e. convection terms) as
well as dissipative processes normally associated
with entropy production. In the case where only
dissipation processes occur, equation (1) implies
the theorem of minimum entropy production
which was previously proposed by Prigogine
[16]. When d¢ becomes a total differential,
equation (1) is referred to as the local potential.
The practical importance of the local potential
arises from the possibility of determining the
stationary states through a variational principle.
Numerous examples of variational solutions to
boundary value problems can be found in
the works of Hays [17, 18], Schechter [19] and
Butler and Rackley [20].

In 1965 Glansdorff and Prigogine [21] showed
that the concept of the local potential was
closely related to fluctuation theory. In this
paper they defined time-dependent local poten-
tials which were such that the macroscopic time
evolution corresponded to an extremum. Schech-
ter and Himmeblau [19] found a local potential
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for the Benard Problem and obtained a varia-
tional solution.

In the present work a local potential for the
Taylor problem is obtained using the techniques
proposed by Prigogine and Glansdorff [21].
A direct method is then applied to the genera-
lized variational integral to obtain a solution to
the Taylor problem with and without an
imposed radial temperature gradient.

II. GENERALIZED LOCAL POTENTIAL

Using the techniques proposed by Glansdorff
and Prigogine [21] a functional form which
includes variable conductivity and viscosity
can be found. Consider an incompressible fluid
in a volume which has a boundary surface S.
The equations of continuity momentum and
energy when written in cartesian tensor form are :

Ou;
dx;

au,' 3u,~ _ ap a
p (E + “jé'x—) =pX; — ox, + a;(fij)

=0 %)

(3

de de l) A ou; Ou;
P(?af*“fa—x,.)— "o T ax, Pax, @
where
oT
W=~k 5)

Ou;  Ou;
tiJ' =H (axj + axi>' (6)
If equations (2), (3) and (4) are multiplied by
infinitesimal variations dp, —du;, and (1/T;) 6T
respectively and then added, the resulting
equation can be integrated by parts and then
integrated over the volume ¥ and time ¢ to yield

”( Ot 510 +"C %TéT) dv de

_ Ou; dp P 0w
—J-j [535,6 +6x ou; +7},6 oT

t v

ou Y ou by k (aT)
+25(ax,.) ax,5% % T 21, ° o,
u; (Ou Ou; 0 Ou;
i o = Z\eT
* Ty <6xj6x + Hox, (3x>‘s
uu; (Ou;  Ou;\ 0T pu 0
T (6x +5x—)66x 7 0%
ou; pcu oT
ox j ax-
x dVdt — J' [ a“‘ ig‘faT

6 ; +
3u Ou;

When the families of temperature and velocity
distributions consist of an appropriate macro-
scopic distribution plus small and arbitrary
variations around the macroscopic distribution
such that

T(x;, t) = T¥(x, t) + 6T 8)
ufx;, t) = uf(x;, t) + ou; 9)

and when the thermal conductivity and viscosity
are functions of T and can be represented by

KT) = k*(T*) + ok (10)
WT) = pX(T™*) + op (11)
then equation (7) becomes:

6L = — 1J [p(5 )+ 2 (6T)2] dv <0
T,

v

o [

tv
p* du¥

— 0T — pX,;du;

— pup; 6 —

™

ouf pc, oT* 6u’,“

T, ot ax,
op* ; Ou; Ou;
6x5u+7},6x5T+ 6<6x6x>
6u* ous M s, k ks 97_"6_2

ax ax; 2 o \0x; 0x;

uf | ou* ouy « O [ouf
+7}, [ax,. ox; ks Ox; <6x)] oT
wruf |our  ouf | 0T  puf
T, [ax * 0x ] ax, T

Xj J

ou; + ———0T +

b3}
L6 —uu,
j

+
2 Ox;
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ou, pc, ,O0T*
— putufd — + Lur—
Ut ox; 'I})u’ 8xj5T

ox;
t s
k*oT*  p*uf (our  Out
+ o 1 1 J
{To 0x, * T, <8x1 " 6.\‘,»)}

5T] n,dSdt <0 (12)

As a result of equation (12), a generalized
functional for an incompressible fluid with
variable conductivity and viscosity can be written

as:
ouf pc, 0T*
L= —u; °
UE’at u'+To ot T+

op* p* ouf u* fou; du
opT, POUT g B[ U
FR I N P S Fl

Coprour K (@T ar)

ou}
Ox; p

+

u; +

0x, 0x; ‘T, 6-;155,
(G0, 0 0 g
T, \0x; Ox; 0x; 0x,
+#*u?‘ ouf  ou?t (3_T ﬁ‘z—a-—uiu,
T, \0x; 0x;/)0x; 2 0x;
ou;  peuroT*
— putu* —= 4+ =L T — pXiu, |dV dt
puj ul axj + r]—b axj p lul:|
ou} k*oT*  p*u®
— 'u*_~._u‘ SR qeiin
ox, ' T éx, Ty

t s

Qu  Ouf
T W Tl n.dsd 13
) <6x,- ' c’ix,)} ] mdsde

In this form the functional contains the time-
dependent quantities of interest (u¥, T* p*) and
fluctuating quantities u;, T and p. In a variational
sense we arc then dealing with a restricted
functional which involves two types of terms;
those which may vary during the evolution of
the system and those which remain constant
during the variations process. As a necessary
condition, the Euler-Lagrange equations

oL

— > =( (14)
OT, u,, u¥, T*, p.p*

oL

-> =0 (15)
5P u, ut, T.T* p*

oL

—) =10 (16)
ou; ut. T.T* p.p*

yield the continuity, momentum and energy
equations after the subsidiary conditions

u; = u
T=T* (17)
p=p*

are satisfied. Since the starred and unstarred
quantities are functions of position and time,
the techniques used for the solution of such a
variational problem will differ from those
normally employed in classical variational prob-
lems.

III. THE VARIATIONAL FORM OF THE
TAYLOR PROBLEM

To obtain the functional for the Taylor
problem the following assumptions are made:
(1) The thermal conductivity, specific heat
and viscosity of the fluid are assumed constant.
As a result the analysis is limited to gases with
small temperature differences or liquids over
slightly larger differences: (2) The viscous
dissipation and energy associated with the
change in pressure have been neglected ; (3) The
gravitational field effects are assumed negligible
in comparison to the centrifugal force field
effects; (4) The perturbations are arbitrary
infinitesimal disturbances and occur over a very
short interval of time; (5) The perturbations are
assumed to be axisymmetric; and (6) The pertur-
bations in the axial direction are periodic to
account for the infinite boundary condition in
the axial direction. Under these restrictions, the
functional (13) becomes:

ou} pc, ¢T*
L—Jj[o 5 u; + T, T +
v

cuf
=P
Jx,
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+

LN SR
ox; T, Ox; 2 \0x; 0x;
oror o,
2T, 0x;0x; 2 0x;

Oou; peuf uf oT*

— putu} — + —
X; T, axj

Hox, " 7 T, ox,

s

U;

:| dv dt

T] nydsde.  (18)

Due to the boundary conditions on the varying
quantities 4; and T and because of the periodic
nature of the z component, the surface integral
may also be neglected in (18). For a small
interval of time & it is assumed [19, 22] that the
functional L in cylindrical coordinates (r, z) can
be approximated to the second order in ¢ by the
Taylor series expansion :

L = ¢l ~f—z-:/2[2

A

pc,0T* ou¥f uf oul op*
Lk} T z =
T o +<ar oz )P T

+ O (w *a“* y — g
az z p a uz az r p r ur

ou¥
+p at u"+p 6t

ur——= u
r z
() G0 ()
r or r r
+ (% 2 + <@_0>2 + (auz 2:| pcv
0z 0z 0z + T,

oT* oT* k
* *
X (u T +u . T) + _2T0

G+ G reed

5,
I, = [a_tf [same integrand as I,] r dr dz](19)
r 2

t=0
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In the case of rotating coaxial cylinders where
u,, ug, u, denote the components of the velocity
in the increasing r, # and z directions, the Navier-
Stokes and energy equations admit stationary

solutions of the form:

u® =u® =0

B
u = VO = Ar + -

(I;-T), r
T =T, — 2% "1n —
! Inn n R,
ap(s) (V(s))2
or p—;——
where
4 Q,R7 — ,R;
R2 — Rf
Q
B R2R2 1
(R% — R?
_R
R,
and
>
u= Q,

(20)

21

(22

23)

(24)

(25)

(26)

(27)

Now let the stationary state be perturbed by

infinitesimal disturbances such that
u, = £, exp(—at)
ug = V® + £ exp (—61)
u, = &, exp (—6t)
T =T + fexp(—é6t)
p=p" +fexp (-6t
and
uf = &, exp(—a*t)
uf = V9 + E¥exp(—6*1)
uf = L¥exp(—6*1)
T* = T® 4 §* exp (—6*1)

(28)
(29)
(30)
(31
(32)

(33)
(34)
33)
(36)
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(37

where the density variation due to temperature
change is given by

p=poll +aTy — T)] (38)

where « is the coefficient for volume expansion.
For small temperature variations, the vari-
ation in density will be small and the density
will be assumed constant except when multiplied
by the centrifugal acceleration term (v*)?/r.
Here the density disturbance will be given by the
well-known Boussinesq approximation

p* = p¥ + fi* exp (- 5*1)

(39),

It is to be noted that when the assumed per-
turbations [equations (28-38)] are inserted into
equation (19), the function L is not extremalized
since the perturbations &,, &, ., fj and § as well
as the stability parameter & are as yet undefined.
Thus these functions and the stability parameter
are sclected such that L is extremalized. A
necessary condition for this extremalization
is that the first variation vanish.

8p = — poad* exp (—é*t).

n

&2 81, g2 oI*
& e © 9 46
2 Zax(a)‘sxm T2

k=1

(40)

where the X ,) are the perturbations of the de-
pendent variables. Thus, for 8L = Oitisnecessary
for

oI, ol
210, 22 =0 41
Xy T 0Xg 4D
and
oL _g @)
06

In general the sign of & can not be determined
without specific knowledge about the form of
the perturbations X . Here a Ritz [22] type of
approximation is assumed such that

r

X(a) = Z C§¢k

k=1

43)

where the C% are constants and the ¢, are
functions of the spatial coordinates and members
of a complete set which satisfy the boundary
conditions for all values of the arbitrary
constants C%. A similar set of functions is assumed
for the unvaried perturbations.

The coefficients C* can be found from the
system of equations

a=12...,n

1

2%3:0 k=12 .r .
After the differentiation the subsidiary con-
ditions
(45)
= ¢* (46)

are satisfied and the resulting (n x r) equations
yield an eigenvalue problem having & as a
parameter. The state of marginal stability
can be found by allowing & to vanish.

To solve the Taylor problem, let us intro-
duce a pair of dimensionless quantities such that

— R
X = Ll_" (47
and
a=Ail (48)
where
l - R2 - Rl
A = wavenumber in the axial direction
Ry = Fat Ra

Thus the angular velocity becomes
B,
where

C=RL2=n+(1—n)(x+z‘z)
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When the perturbations [equations (28-38)]
and the dimensionless radius are introduced
into I, it becomes:

3 1
g*
Iy =j j [—pa-* (:¢,+czéo+¢:‘c, +6700>

1ogzy (- 11) 55 1 oi*

of
+ ¢~ 208,650,000 + pob*@ig?

10
% (Ro + 1) &, + 20AE3E, + { , f")
10&5\? 14V ¢, 1a¢>
* (77) T o T <z ox
21 - n)

1
+<IC>¢2(€>59 IC
0 2 0&.\?
x5991g+<§z") +<§Zi> + (;)}

pe,dT® g, {2 dT* 99
Tyl dx °* 2T, (I* dx ox

160 (o8
+ (7 a) + (62) }](Ro + Ix)ldx dz (50)

where terms higher than quadratic in the distur-
bances and terms containing only non-varied
quantitics have been neglected.

Let the typical terms in the general fourier
expansion for the disturbances be given by:

fi(x, 2) = p(x) cos ‘% (51)
EAx, 2) = u(x) cos flf (52)
Ex, 2) = u(x) cos = (53)

1

1
— —zi(Cu) sin e

Ex,2) = :

(54)

B(x,2) = T(x) cos 7 (55)
By choosing the perturbations in this fashion,
the terms involving the pressure vanish inde-
pendent of the choice of p, u, v and T.
Now let the functions u, v and T be approxi-
mated by the functions

ux) = Y amlx — 3P0 (56)
n=1

W) = Y B — Y (57)
n=1

T = ¥ 5 —hx0  (58)
n=1

These functions were chosen for their complete-
ness and because they satisfy the boundary

conditions
u—d—u—v—g 0 at x=
dx
independent of the arbitrary constants.

The integrations in equation (50) can easily
be performed with the aid of equations (51)(58)
and the generalized integrals presented in
Appendix 1. The resulting equation is a function
of the arbitrary constants a,, a¥, 8,, B¥, v, and y*
and the physical parameters of the problem.
The dimensionless parameters which appear
in these equations are defined as:

7 (59

44,031
2

Ta = Taylor number = — (60)
Pr = Modified Prandtl number — &k"v (61)
Ra = Rayleigh number
(XP _ 402
ol - T
viin ()
N = Ratio of Rayleigh to Taylor number
oP(T, — T))
44, In(n) ©3)
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where n and ji are the radius ratio and the speed
ratio, respectively.

The system of equations obtained by differen-
tiation

ol,
P 0 (64)
o1,
e 0(n=123,...7r (65
ol
a0 o

with respect to the arbitrary constants must
then be made to satisfy the subsidiary conditions
that

a, = o (67)
Bn = B3 (68)
Tn = Vx (69)
& = &*. (70)

For a non-trivial solution to exist the deter-
minant of coefficients in this system of equations
must vanish thus yielding a secular equation
of the form

F(n, i, Ta,N,a) = 0 (71)

IV. RESULTS AND CONCLUSIONS

With the aid of an IBM 7040 computer
results were obtained using up to three arbitrary
constants in each expansion {equations (56-58)]
for a wide range of the parameters #, i, and N.
In each case for a given N, #, and f, the state of
marginal stability (i.e. § = 0) yields an equation
for T as a function of (a). This equation was then
solved for the value of (a) which made T a
minimum. In all cases only the real roots were
considered and in the case of multiple real roots
the minimum root was the root of interest.

The results obtained by the variational
method for a wide range of the parameters

n, fi and N are presented in Table 1. These
results should be compared with the results ob-
tained using Galerkin’s method by Diprima,

Table 1. Analytical results using variational method. Critical
Taylor numbers, Ta, and corresponding values of wavenumbers,
a, for various assigned values of n, fi and Rayleigh/Taylor
number, N. (Subscripts denote the number of terms used in
approximating series.)

n i a N

09 0 313 +1-0 2250-61
313 +0-5 2720-81
313 0-0 3504-62
313 -05 4794-83
313 -10 7600-10

05 0 315 1-0 4615 30
315 o5 3321-40
315 0-0 6248-73
315 —05 7601-40
315 -1-0 9510-62

0-5 02 315 10 2860-57
315 05 3400-03
315 0-0 418772
315 —0-5 5420-18
315 —10 7600-21

0-5 -0-125 316 10 7172-18
316 05 8137-42
316 0-0 902732
316 —-0-5 9768 51
316

10 845-63

Walowit and Tsao [4] which are found in
Table 2. Table 3 lists the critical Taylor numbers
and wavenumbers for various assigned values
of n and ji.

In Fig. 1 the variation of Taylor number with
the ratio of the Rayleigh to Taylor numbers for
various values of # and i is shown. This figure
exhibits the destabilizing effect of a positive
temperature gradient. It also shows that de-
creasing ji for fixed n produces a more stable
situation.

I Fig. 2 the variation of Ta #* with 4 1s
sbcwn for various values of ji. For a given value
of ji it becomes evident that increasing the
gap size has a destabilizing effect. For a fixed
gap size, decreasing 7 has a stabilizing effect.

In Fig. 3 the per cent error based on the results
of Chandrasekhar and Elbert [10] is shown vs.
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Table 2. Analytical results of Diprima, Walowit and Tsao [4]
using Galerkin method. Critical Taylor numbers, Ta, and
corresponding values of wavenumber, a, for various assigned
values of v, i and Rayleigh/Taylor number. (Subscripts
denote the number of terms used in approximating series.)

n i a N Ta,
10 0 312 +1-0 21773
312 +05 26533
312 0-0 3394:6
312 -05 47059
312 -10 7631-9
05 0 315 +10 4609-0
315 +05 52953
315 0-0 62182
315 —05 7522:2
315 -10 9494-8
0-5 02 315 10 28523
315 0-5 3382-8
315 0-0 41542
315 -05 5376:8
315 —10 75980

Table 3. Critical Taylor numbers and wavenumbers for
various assigned values of n and fi. (Subscripts denote the
number of terms used in approximating series.)

n I a (Tan?),
09 020 313 24828
0-00 313 28386

0125 314 34475

08 020 313 20365
0-00 313 2564-3

—0125 315 3092:8

07 020 313 16732
0-00 314 22036

—0125 315 27113

05 020 315 10467
0-00 315 15622

—0125 318 22333

the number of terms in the approximating
series for various values of n and fi. In the narrow
gap (10 < 5 < 0-8) the effect of I upon the error
was small. However, as the gap becomes wider
(7 — 0-5), the effect of /i becomes larger and more
terms become necessary to obtain convergence.

Since the general functional is capable of
treating non-linear problems, the significance

Tax10?
10

\
B
NG

\ s N
\ N
4 \\
1-0.5,#02
SEEAN

-15 -10 -05 00 05 1.0 15

N= RAYLEIGH _NUMBER
TAYLOR NUMBER

FIG. 1. Variation of Taylor number Ta with ratio of Rayleigh
to Taylor number N for assigned values of {i and 7.

4000

3000

NN N

2000
#:oo7//
|
| /
#=0.20
1000
0
0O 02 04 06 08 10
|
=2

FIG. 2. Variation of Ta 7 with n when ji = 0-2, 0-0, —0-125.
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705,200 |

e

Ta-lac

x100
Tac

NUMBER OF TERMS

FiG. 3. Per cent error based on exact results of Chandrasek-
har and Elbert [10] vs. the number of terms in approxi-
mate series for various values of » and i when N = 0.

of this method is in no way limited by its
linearized application here to the Taylor problem.
However, it is felt, due to the excellent agreement
between the results obtained by the variational
method and Galerkin’s method, that there is a
direct relationship between Galerkin’s method
and the variational method in the case of linear
problems. This confirms theideasof Roberts [23].
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SOLUTION VARIATIONNELLE DU PROBLEME DE STABILITE DE TAYLOR BASEE
SUR LA THERMODYNAMIQUE EN NON-EQUILIBRE

Résumé-—Les articles récents de Glansdorff, Prigogine et Schechter ont montré qu’il existe un potentiel
local dépendant du temps dans lequel I’évolution temporelle macroscopique correspond 4 un extremum.
Schechter et Himmelblau [19] ont résolu le probléme bien connu de Bénard en employant une formulation
variationnelle restreinte. Dans cet article, les travaux de Glansdorff, Prigogine et Schechter sont modifiés
et étendus pour obtenir une solution variationnelle au probléme de stabilité de Taylor pour un fluide
visqueux contenu entre des cylindres coaxiaux en rotation avec et sans gradient radial de température.
Les résultats obtenus sont en excellent accord avec les résultats expérimentaux de Chandrasekhar [9],
Chandrasekhar et Elbert [10], Diprima, Walowit et Tsao [4], Yih [5], Lai [25], et Becker et Kaye [7] et
avec les résultats expérimentaux de Becker et Kaye [8], Bjorklund et Kaye [12], Haas et Nissan [13] et Ho,
Nardacci et Nissan [15].

EINE VARIATIONSLOSUNG ZUM PROBLEM DER TAYLOR-STABILITAT AUF GRUND
DER NICHT-GLEICHGEWICHTSTHERMODYNAMIK

Zusammenfassung—Die jiingsten Arbeiten von Glansdorff, Prigogine und Schechter haben gezeigt, dass
ein zeitabhiingiges ortliches Potential existiert, in welchem die makroskopische Zeitenwicklung einem
Extremum entspricht. Schechter und Himmelblau [19] 16sten das wohlbekannte Benard-Problem unter
Verwendung einer eingeschriinkten Variationsformulierung. In dieser Untersuchung weiden die Arbeiten
von Glansdorff, Prigogine und Schechter modifiziert und so erweitert, dass man hinsichtlich des Taylor-
Stabilititsproblems fiir eine, zwischen rotierenden koaxialen Zylindern befindliche zihe Fliissigkeit mit

(76)

an

(73

&)
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und ohne radialen Temperaturgradienten Variationsiésungen erhilt. Die erhaltenen Ergebnisse stimmen

ausgezeichnet mit den analytischen Resultaten von Chandrasekhar [9], Chandrasekhar und Elbert [10],

Diprima, Walowit, Tsao [4], Yih [5], Lai [25], Beeker und Kaye [7] und mit den Messergebnissen von

Becker und Kaye [8]. Bjorklund und Kays [12], Haas und Nissan [13], Ho, Nardacci und Nissan [15]
liberein.

BAPUAIIMOHHOE PEINEHUE CTALOUOHAPHOW 3AJJAYU TENJOPA HA
OCHOBE HEPABHOBECHOI TEPMOJUHAMUKU

Aunoramua—B HenaBHo ony6amkoBaHHHX paGotax [aancgopda, [Tpuromuna u [lexrepa
MOKAsaHo, YTO CYINEeCTBYET 3aBUCAINMI 0T BpeMeHH JIOKAJBHBIA MOTEHIUAJ, B KOTODOM
MAKPOCKOTNYeCkoe BpeMs pasBuTUA uMeeT sxctpemym. llexrep u Xummentaay (19) pemamn
XOpOnIO M3BeCTHYIO 3amadyy BeHapga, MCNONb3YA BapUAMOHHYHI 3afa4y B OI'DaHHYeHHOM
nocranoBKe. B aToii cratse nanusie [nanacuopda, Hpuromuna u Hlexrepa moanduinpoBass
H pacHIAPeHEl AJA TOT0, 4TOOH MOJYYMTh pelleHMe BapuanMoHHOH samaun Tsimopa no
VCTOWYMBOCTH BABKOH MKUIJTKOCTH, HAXONAMEHCA Memly BPAlAOMUMUCH KOAKCHATBHBIMY
HUIIMHAPAMY TIPH HAJIUYNK ¥ OTCYTCTBHU PAZUAILHOTO TPAJIEHTA TEMIIEPATYPH.



