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Abstract-The recent papers of Glansdortf, Prigogine and Schechter have shown that a time dependent 
local potential exists in which the macroscopic time evolution corresponds to an extremum. Schechter and 
Himmelblau [19] solved the well-known Btnard problem using a restricted variational formulation. In this 
paper the works of Glansdorff, Prigogine and Schechter are modified and extended to obtain a variational 
solution to the Taylor stability problem for a viscous fluid contained between rotating coaxial cylinders 
with and without a radial temperature gradient. The results obtained are in excellent agreement with the 
analytical results of Chandrasekhar [9], Chandrasekhar and Elbert [lo], Diprima, Walowit and Tsao [4], 
Yih [S], Lai [25], and Becker and Kaye [7] and with the experimental results of Becker and Kaye [8], Bjork- 

lund and Kays [12], Haas and Nissan [13] and Ho, Nardacci and Nissan [15]. 

NOMENCLATURE 

dimensionless wave number ; 
constant equation (24); 
constant equation (49) ; 
constant equation (25); 
constant equation (49); 
constants equation (43) ; 
specific heat at constant volume ; 
internal energy per unit mass ; 
ith thermodynamic flux ; 
thermal conductivity ; 
functional symbol ; 

R, - 4; 
ratio of Rayleigh to Taylor number ; 
Prandtl number ; 
pressure ; 
Rayleigh number ; 
radius of inner and outer cylinder ; 
radius ; 
surface ; 
Taylor number ; 
temperature perturbation ; 

T,, T,, temperature of inner and outer 
cylinder ; 

t, time ; 

#i, ith component of velocity vector ; 

u, radial perturbation component of 
velocity ; 

K volume ; 

0, 8 perturbation component of 
velocity ; 

K ith component of heat flux vector ; 

x, dimensionless radius, equation (47) ; 
%> ith Cartesian coordinate ; 

xi, ith component of body force ; 

XC.), generalized perturbation ampli- 
tude ; 

5 axial coordinate. 

Greek symbols 
a, coefhcient of volume expansion ; 

2 

constant in equation (57) ; 
constant in equation (58) ; 

Y “9 constant in equation (59) ; 
43 



Superscripts 
* nonvaried quantity during varia- 

tional process ; 

s, evaluated at a stationary state. 

Subscripts 

0, 
i, 
U, 
I, X, 8, Z, 

evaluation at a reference state ; 
ith component of a vector ; 
ith, jth component of a tensor ; 
components in coordinate direc- 
tions. 
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variational symbol ; 
Kronecker delta ; 
time interval ; 
dimensionless length ; 
radius ratio RI/R2 ; 
pressure perturbation amplitude ; 
cylindrical coordinate ; 
temperature perturbation ampli- 
tude ; 
wavelength in axial direction z ; 
absolute viscosity ; 
speed ratio 52,/Q, ; 
kinematic viscosity p/p ; 
velocity perturbation amplitudes ; 
density ; 
stability parameter ; 
ith, jth component of stress tensor ; 
local potential ; 
angular velocity of inner and outer 
cylinder. 

I. INTRODUCTION 

THE PROBLEM of the stability of a viscous fluid 
contained between concentric cylinders was 
first analyzed by G. I. Taylor [l] in 1923. Since 
then numerous researchers have obtained solu- 
tions under a wide variety of boundary condi- 
tions and restraints. An excellent review of 
the research connected with this problem has 
been compiled by Chandrasekhar [2] and by 
DiPrima [3]. In 1964, Diprima, Walowit and 
Tsao [4] solved the Taylor problem using 
Galerkin’s Method with and without a radial 
temperature gradient and obtained results which 

were m good agreement with the analytical 
results of Yih [5], Lai [6], Becker and Kaye 
[7, 81, Chandrasekhar [9], Chandrasekhar and 
Elbert [lo], and Kirchgassner [ 111. In addition 
their results were in good agreement with the 
experimental results of Becker and Kaye [S], 
Bjorklund and Kays [ 121, Haas and Nissan 
[ 131, and Ho, Nardacci and Nissan [ 141. 

Because of the excellent agreement between 
the published analytical and experimental re- 
sults, this problem was selected to demonstrate 
the usefulness of a variational technique which 
is based upon non-equilibrium thermodynamics. 
In 1964 Prigogine and Glansdorff [15] showed 
that for the whole class of macroscopic systems 
subjected to time independent boundary condi- 
tions, there existed a general criterion of 
evolution. In this paper, the evolution criterion 
predicted the existence of a quantity d4 of 
the form 

(1) 

where the forces X; and fluxes J; include 
mechanical processes (i.e. convection terms) as 
well as dissipative processes normally associated 
with entropy production. In the case where only 
dissipation processes occur, equation (1) implies 
the theorem of minimum entropy production 
which was previously proposed by Prigogine 
[ 161. When d+ becomes a total differential, 
equation (1) is referred to as the local potential. 
The practical importance of the local potential 
arises from the possibility of determining the 
stationary states through a variational principle. 
Numerous examples of variational solutions to 
boundary value problems can be found in 
the works of Hays [ 17, 181, Schechter [ 191 and 
Butler and Rackley [20]. 

In 1965 Glansdorff and Prigogine [21] showed 
that the concept of the local potential was 
closely related to fluctuation theory. In this 
paper they defined timedependent local poten- 
tials which were such that the macroscopic time 
evolution corresponded to an extremum. Schech- 
ter and Himmeblau [ 191 found a local potential 
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for the Benard Problem and obtained a varia- 
tional solution. 

In the present work a local potential for the 
Taylor problem is obtained using the techniques 
proposed by Prigogine and Glansdorff [21]. 
A direct method is then applied to the genera- 
lized variational integral to obtain a solution to 
the Taylor problem with and without an 
imposed radial temperature gradient. 

II. GENERALIZED LOCAL POTENTIAL 

Using the techniques proposed by Glansdorff 
and Prigogine [21] a functional form which 
includes variable conductivity and viscosity 

(7) 

can be found. Consider an incompressible fluid 
. _ 

in a volume which has a boundary surface S. 
When the families of temperature and velocity 

The equations of continuity momentum and 
distributions consist of an appropriate macro- 

energy when written in Cartesian tensor form are : 
scopic distribution plus small and arbitrary 
variations around the macroscopic distribution 

aui_() 
aXi - 

such that 

(2) T(xip t) = T*(x, t) + 6T (8) 

P($+“j~)=PXi-~+&(i,j) (3) 

Ui(Xi, t) = Uf(Xip t) + 6ui (9) 

and when the thermal conductivity and viscosity 

p($+Uj&)=-~+Tij$-~t (4) 
are functions of T and can be represented by 

k(T) = k*(T*) + 6k (10) 

where p(T) = p*(T*) + 6,~ (11) 

?#L-kE 
I axi (5) 

(6) 

If equations (2), (3) and (4) are multiplied by 
infinitesimal variations 6p, -6ui, and (l/T,) 6T 
respectively and then added, the resulting 
equation can be integrated by parts and then 
integrated over the volume V and time t to yield 

then equation (7) becomes : 

6L= -f 
S[ 

p(SUi)’ +~!BT)’ dl’~ 0 
0 1 

u 

6L = p~~i 
pc, aT* 

+ ~atbT + ~6~ 
0 I 

* . . 

’ ” 

p au. = + Maui + r~“T 
i 0 i 

t ” 
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6T 
1 

n,dSdt < 0 (12) 

As a result of equation (12), a generalized 
functional for an incompressible fluid with 
variable conductivity and viscosity can be written 
as : 

dVdt 

x ~~ + C)} T] njdsdt (13) 

In this form the functional contains the time- 
dependent quantities of interest (UT, T*. p*) and 
fluctuating quantities ui, T and p. In a variational 
sense we are then dealing with a restricted 
functional which involves two types of terms ; 
those which may vary during the evolution of 
the system and those which remain constant 
during the variations process. As a necessary 
condition, the Euler--Lagrange equations 

6L - 
6P ) 

-0 (15) 
u,. u:. T. T’. p* 

6L 

-1 6ui 

-0 
e.T.T*,p.p* (16) 

yield the continuity, momentum and energy 
equations after the subsidiary conditions 

Ui 1 @ 

T= T” 

p =p* 

(17) 

are satisfied. Since the starred and unstarred 
quantities are functions of position and time, 
the techniques used for the solution of such a 
variational problem will differ from those 
normally employed in classical variational prob- 
lems. 

III. THE VARIATIONAL FORM OF THE 

TAYLOR PROBLEM 

To obtain the functional for the Taylor 
problem the following assumptions are made: 
(1) The thermal conductivity, specific heat 
and viscosity of the fluid are assumed constant. 
As a result the analysis is limited to gases with 
small temperature differences or liquids over 
slightly larger differences: (2) The viscous 
dissipation and energy associated with the 
change in pressure have been neglected ; (3) The 
gravitational field effects are assumed negligible 
in comparison to the centrifugal force field 
effects ; (4) The perturbations are arbitrary 
infinitesimal disturbances and occur over a very 
short interval of time; (5) The perturbations are 
assumed to be axisymmetric; and (6) The pertur- 
bations in the axial direction are periodic to 
account for the infinite boundary condition in 
the axial direction Under these restrictions, the 
functional (13) becomes : 

L= + !?$‘gT + 21, 

0 'I 
f r 
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JJ [ au; - P KUi + fgT njdsdt. (18) i o J 1 
f s 

Due to the boundary conditions on the varying 
quantities Ui and T and because of the periodic 
nature of the z component, the surface integral 
may also be neglected in (18). For a small 
interval of time E it is assumed [19,22] that the 
functional L in cylindrical coordinates (Y, z) can 
be approximated to the second order in E by the 
Taylor series expansion : 

11 

+ 

+ 

+ 

+ 

+ 

+ 

X 

X 

($)I+ @2+($)2+@2 
(gj2+@g2+($$j +F 

[same integrand as II] I dr dz 1 (19) t=o r 2 

In the case of rotating coaxial cylinders where 
u, ug, u, denote the components of the velocity 
in the increasing r, 8 and z directions, the Navier- 
Stokes and energy equations admit stationary 
solutions of the form : 

where 

and 

u(S) = u(S) = 0 
, z (20) 

B 
uf’ = I/‘“’ = Ar + - (21) r 

T”’ = T 
1 

_ (T2 - T1)ln L 
lnrl Rl 

(22) 

ap(s) ( v’“‘)2 
YFzP r 

(23) 

A= 
B,R: - L’,R,2 

R; - R: (24) 

(25) 

(26) 

(27) 

Now let the stationary state be perturbed by 
infinitesimal disturbances such that 

and 

u* = &exp(-Zt) (28) 

ue = Vcs) + to exp (-at) (29) 

u, = t,exp(-&) (30) 

T = T(“’ + gexp(-dt) (31) 

p = p’“) + rjexp (-f?t) (32) 

u,* = 5, exp ( - (?* t) (33) 

ue* = Vcs) + <e* exp (- fT*t) (34) 

u* = 5: exp (- if*t) z (35) 

T* = T’“) + 8* exp (- C*t) (36) 
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p* = p@) + ij* exp (-C*t) (37) (43) 

where the density variation due to temperature 
change is given by 

P = PO [l + oc(To - VI (38) 

where a is the coefficient for volume expansion. 
For small temperature variations, the vari- 

ation in density will be small and the density 
will be assumed constant except when multiplied 
by the centrifugal acceleration term (t1")2/r. 

Here the density disturbance will be given by the 
well-known Boussinesq approximation 

6p = - pout?* exp ( -iT*t). (39) 

It is to be noted that when the assumed per- 
turbations [equations (28-38)] are inserted into 
equation (19), the function L is not extremalized 
since the perturbations <, r& 5,, f and 0 as well 
as the stability parameter d are as yet undefined. 
Thus these functions and the stability parameter 
are selected such that L is extremalized. A 
necessary condition for this extremalization 
is that the first variation vanish. 

6L = & 
Pa 61, c T6X(,, 

(a) 
a=1 

k=l 

where the Ct are constants and the 4, are 
functions ofthe spatial coordinates and members 
of a complete set which satisfy the boundary 
conditions for all values of the arbitrary 
constants Ck,. A similar set of functions is assumed 
for the unvaried perturbations. 

The coefficients Ck, can be found from the 
system of equations 

811 
ac”,=O 

a= 1,2,...,n 

k = 1,2, . . . , r. 
w) t 

After the differentiation the subsidiary con- 
ditions 

X,,, = X;“,, (45) 

5 = c* (46) 

are satisfied and the resulting (n x r) equations 
yield an eigenvalue problem having 6 as a 
parameter. The state of marginal stability 
can be found by allowing 6 to vanish. 

To solve the Taylor problem, let us intro- 
duce a pair of dimensionless quantities such that 

r - R, 
XE--------- 

1 

E2 n 61, 

+z c --6X,,, + ;$dc? (40) and 

6X,=, 
k=l a = ;tl (48) 

where the X,,, are the perturbations of the de- where 

pendent variables. Thus, for 6L = 0 it is necessary 1 = R, - R, 
for 

1 = wavenumber in the axial direction 
611 - = 0; 612 

%=, 6x,,,=O 
(41) R 

0 
= (R, + R2) 

2 
and 

Thus the angular velocity becomes 

612 o 
-_= 

is 
(42) sz = &g(x) = a, A, + $ r 1 (49) 

In general the sign of 6 can not be determined 
without specific knowledge about the form of 

where 

the perturbations X,, Here a Ritz [22] type of 
approximation is assumed such that i=++(l -q)(x+$) 
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A, = CP - v2) 
(1 

B 

1 
= v2(l - i-3 

1 - r#lz 

1 d 
5,(x, 2) = - -- (cu) sin - 

az dx a; (54) 

0(x, 2) = T(x) cos $ (55) 

When the perturbations [equations (28-38)] By choosing the perturbations in this fashion, 
and the dimensionless radius are introduced the terms involving the pressure vanish inde- 
into I,, it becomes: pendent of the choice of p, u, v and T. 

Now let the functions u, u and T be approxi- 

z, = i;B [-+* (5X,+5X + 5T5, ++j matedby;th;;ns( _ a)2 (n_l) 

CI, x2 X 

(56) 

?I=1 

1 at: 

+ Iax+ ( 

!L&+g @+ff& 

> v(x) = i j?“(X2 - $)x(“-l) (57) 
II=1 

T(x) = i y&x2 - +)x’“- l) (58) 

2 dV’“’ + 2 1 alo 
1 dx ax 

(50) 

where terms higher than quadratic in the distur- 
bances and terms containing only non-varied 
quantities have been neglected. 

Let the typical terms in the general fourier 
expansion for the disturbances be given by : 

n=l 

These functions were chosen for their complete- 
ness and because they satisfy the boundary 
conditions 

a=E=t~=o=O at x = *f (59) 

independent of the arbitrary constants. 
The integrations in equation (50) can easily 

be performed with the aid of equations (51)-(58) 
and the generalized integrals presented in 
Appendix I. The resulting equation is a function 
of the arbitrary constants CI,,, crx, &, /I.*, y,, and 7: 
and the physical parameters of the problem. 
The dimensionless parameters which appear 
in these equations are defined as: 

Ta = Taylor number = - vz 4ArQ:14 (@) 

Pr = Modified Prandtl number = y (61) 

4(x, z) = p(x) cos 7 

<&x, z) = u(x) cos 7 

&(x, z) = u(x) cos s 
1 

(51) Ra = Rayleigh number 

aPr(T, - T1)14Q: =- 
(52) v2 hl(?) 

(62) 

N = Ratio of Rayleigh to Taylor number 

(53) flr(T, - q) =- 
4Ar ln (v) 

(63) 



50 H. W. BUTLER and D. E. MCKEE 

where q and p are the radius ratio and the speed 
ratio, respectively. 

The system of equations obtained by differen- 
tiation 

w o 
-= 

aa, (64) 

X = 0 (n = 1,2,3,. . . , r) (65) 

ah o 
-= 

87, 
(66) 

with respect to the arbitrary constants must 
then be made to satisfy the subsidiary conditions 
that 

(67) 

(68) 

q, jI and N are presented in Table 1. These 
results should be compared with the results ob- 
tained using Galerkin’s method by Diprima, 

Table 1. Analytical results using variational method. Crztical 
Taylor numbers, Ta, and corresponding values of wavenumbers, 
a, for various assigned values of q, ji and RayleighlTaylor 
number, N. (Subscripts denote the number of terms used in 

approximating series.) 

9 z 
0.9 0 

0.5 0 

0.5 0.2 

Y” = YX (69) 

5 = p. (70) 
0.5 -0.125 

For a non-trivial solution to exist the deter- 
minant of coefficients in this system of equations 
must vanish thus yielding a secular equation 
of the form 

F(q, fi, if, Ta, N, a) = 0 (71) 

IV. RESULTS AND CONCLUSIONS 

With the aid of an IBM 7040 computer 
results were obtained using up to three arbitrary 
constants in each expansion [equations (5658)] 
for a wide range of the parameters q, ii, and N. 
In each case for a given N, q, and fi, the state of 
marginal stability (i.e. 5 = 0) yields an equation 
for T as a function of (a). This equation was then 
solved for the value of (a) which made T a 
minimum. In all cases only the real roots were 
considered and in the case of multiple real roots 
the minimum root was the root of interest. 

The results obtained by the variational 
method for a wide range of the parameters 

a ‘V Th J 

3.13 -t- 1.0 2250.6 1 
3.13 + 0.5 2720.81 
3.13 0.0 3504.62 
3.13 -0.5 4794.83 
3.13 -10 7600.10 

3.15 1.0 4615 30 
3.15 0.5 5321.40 
3.15 0.0 6248-73 
3.15 -0.5 7601.40 
3.15 - 1.0 95 1 O-62 

3.15 1.0 2860-57 
3.15 0.5 3400.03 
3.15 0.0 4187.72 
3.15 - 0.5 5420.18 
3.15 -1.0 7600.2 1 

3.16 I.0 7172.18 
3.16 05 8137.42 
3.16 0.0 9021.32 
3.16 -- 0.5 9768 5 1 
3.16 - 1.0 10 845.63 

Walowit and Tsao [4] which are found in 
Table 2. Table 3 lists the critical Tayloi numbers 
and wavenumbers for various assigned values 
of q and fi. 

In Fig. 1 the variation of Taylor number with 
the ratio of the Rayleigh to Taylor numbers for 
various values of q and ji is shown. This figure 
exhibits the destabilizing effect of a positive 
temperature gradient. It also shows that de- 
creasing B for fixed v produces a more stable 
situation. 

In Fig. 2 the variation of Ta q2 with 9 is 
sb>wn for various values of j?. For a given value 
of p it becomes evident that increasing the 
gap size has a destabilizing effect. For a fixed 
gap size, decreasing fi has a stabilizing effect. 

In Fig. 3 the per cent error based on the results 
of Chandrasekhar and Elbert [lo] is shown vs. 
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Table 2 Analytical results of Diprima, Walowit and Tsao [4] 
using Galmkin method. Critical Taylor numbers, Ta, and 
cowesponding values of wavenumber, a, for various assigned 
v&es of TV, jI and RayleighlTaylor number. (Subscripts 

denote the number of terms used in approximating series.) 

rl P a N To, 

1.0 0 3.12 +1.0 2111.3 
3.12 +0.5 2653.3 
3.12 0.0 3394.6 
3.12 -0.5 4705.9 
3.12 -1.0 763 1.9 

0.5 0 3.15 +l.O 4609.0 
3.15 +0.5 5295.3 
3.15 0.0 6218.2 
3.15 a.5 7522.2 
3.15 - 1.0 9494.8 

0.5 0.2 3.15 1.0 2852.3 
3.15 0.5 3382.8 
3.15 0.0 4154.2 
3.15 -0.5 5376.8 
3.15 -1.0 7598.0 

Table 3. Critical Taylor numbers and wavenumbers for 
various assigned values of q and ii. (Subscripts denote the 

number of terms used in approximating series.) 

rl 

0.9 

0.8 

0.1 

05 

ii a (Tas% 

020 3.13 2482.8 
@oO 3.13 2838.6 

-0.125 3.14 3447.5 

0.20 3.13 20365 
000 3.13 2564.3 

- 0.125 3.15 3092.8 

020 3.13 1613.2 
0.00 3.14 2203.6 

-0.125 3.15 2711.3 

0.20 3.15 1046.7 
00J 3.15 1562.2 

-0.125 3.18 2233.3 

the number of terms in the approximating 
series for various values of q and F. In the narrow 
gap (1-O < T,J < O-8) the effect of ,C upon the error 
was small. However, as the gap becomes wider 

(q + O-S), the effect of j? becomes larger and more 
terms become necessary to obtain convergence. 

Since the general functional is capable of 
treating non-linear problems, the significance 

LXIO-~ 

,,,= PAYLEIGH NUMBER 
TAYLOR NUMBER 

Fro. 1. Variation of Taylor number Ta with ratio of Rayleigh 
to Taylor number N for assigned values of fl and q. 

0 0.2 04 0.6 08 10 

FIG. 2. Variation of Ta q* with q when F = O-2,0.0, -@125. 
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NUMBER OF TERMS 

FIG. 3. Per cent error based on exact results of Chandrasek- 
har and Elbert [lo] vs. the number of terms in approxi- 
mate series for various values of q and p when N = 0. 

of this method is in no way limited by its 
linearized application here to the Taylor problem. 
However, it is felt, due to the excellent agreement 
between the results obtained by the variational 
method and Galerkin’s method, that there is a 
direct relationship between Galerkin’s method 
and the variational method in the case of litlear 
problems. This confirms theideas of Roberts [23]. 
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SOLUTION VARIATIONNELLE DU PROBLEME DE STABILITE DE TAYLOR BASEE 
SUR LA THERMODYNAMIQUE EN NON-EQUILIBRE 

R&mm&-Les articles recents de GlansdortT, Prigogine et Schechter ont montre qu’il existe un potentiel 
local d&pendant du temps dans lequel l’evolution mmporelle macroscopique correspond B un extremum. 
Schechter et Himmelblau [19] ont msolu le probl&ne bien connu de BCnard en employant une formulation 
variationnelle restreinte. Dans cet article, les travaux de Glansdorff, Prigogine et Schechter sont modifies 
et Btendus pour obtenir une solution variationnelle au problemme de stabilite de Taylor pour un fluide 
visqueux contenu entre des cylindms coaxiaux en rotation avec et sans gradient radial de temperature. 
Les r&&tats obtenus sont en excellent accord avec les resultats experimentaux de Chandrasekhar [9], 
Chandrasekhar et Elbert [lo], Diprima, Walowit et Tsao [4], Yih [5J, Lai [25], et Becker et Kaye [7l et 
avec les resultats exp&imentaux de Becker et Kaye [8], Bjorklund et Kaye [12], Haas et Nissan [13] et Ho, 

Nardacci et Nissan [15]. 

EINE VARIATIONSLGSUNG ZUM PROBLEM DER TAYLOR-STABILITAT AUF GRUND 
DER NICHT-GLEICHGEWICI-ITSTHERMODYNAMIK 

Zusammenfassung-Die jiingsten Arbeiten von Glansdorff, Prigogine und Schechter haben gexeigt, dass 
em zeitabhtigiges iirtliches Potential existiert, in welchem die makroskopische Zeitenwicklung einem 
Extremum entspricht Schechter und Himmelblau [19] lbsten das wohlbekannte Benard-Problem unter 
Verwendung e.iner eingeschriinkten Variationsformulierung. In dieser Untersuchung werden die Arbeiten 
von Glansdorff, Prigogine und Schechter modifiiert und so enveitert, dam man hinsichtlich des Taylor- 
Stabilit.&tsproblems Blr eine, xwischen rotierenden koaxialen Zylindem befmdliche x8he Flilmigkeit mit 

(77) 

(78) 

(79) 
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und ohne radialen Temperaturgradienten Variationsliisungen erh8lt. Die erhaltenen Ergebnisse stimmen 
ausgezeichnet mit den analytischen Resultaten von Chandrasekhar [9], Chandrasekhar und Elbert [lo], 
Diprima, Walowit, Tsao [4], Yih [5], Lai [25], Beeker und Kaye [7] und mit den Messergebnissen von 
Becker und Kaye [a], Bjorklund und Kays [12], Haas und Nissan [13], Ho, Nardacci und Nissan [15] 

tiberem. 

RAPHAHHOHHOE PELUEHHE CTAHHOHAPHOH BAAAYM TEHJIOPX Hi\ 
OCHORE HEPARHOBECHOm TEPMOJHiHAMMKM 

AHHOTM~JI-B He@IBHO OIIy6JIkIKOBaHHbIX p36OTZiX I’:EIHC~Op$Ia, npk~O~kIH3 kl L&!XTepa 

IIOKa33H0, ‘iTO CJ’~eCTBJ’eT 33BkICfIIQkiti OT I3peMeHII JIOKEUIbHbIi IlOTeHUI43n. 3 KOTOPOM 

M3KpOCKOIIHYeCKO!2 BpeMH p33BktTkiR IIMWT 3IECTpeM~M. &?XTt?p kI XkIMMen6my (19) pelII3JIM 

XOPOIIIO k13BeCTHJ’lO 33AaYy &HapAEI, kIC’lIOJIb3J’H B3Pk’IBUMOHHJ’IO 3aRaqy B Ol~p3lIkIWHHOit 

IIOCTaHOBKe. B 3TOi% CTaTbe RaHHbK! halfflCfiOp@, npkll-OFKklH3 II MeXTepa MO;lk4~MIJkIpOB3HbI 

II p3CIIIHpeHbI AJIll TON. YT06bI IIOJIyWTb peIIIeHkIe B3pkGIIJkkOHHOti :13AaYkl ‘hhtJp3 “” 

J’CTOtiWIBOCTk, BRRKOti X(kIJIRKOCT(I, H3XO~FIIQ&ICR MWKay Bp3~3EOIQkIMkWl Iil);lIi(‘kI3JIbHbIMk~ 

I,kIJIllHApaMA IIpll HLNIIJYAH kl OTCJ’TCTBHH p3~kElJIbHW0 I’p3AHeHT3 TeMIEp3Tq-phi. 


